BNews : BNews : The 5th Wave. BNews : The 5th Wave. BNews : The 5th Wave. BNews : The 5th Wave. BNews : The 5th Wave.

Wednesday, December 21, 2011

Polifenol


Polifenol adalah kelompok zat kimia yang ditemukan pada tumbuhan. Zat ini memiliki tanda khas yakni memiliki banyak gugus fenol dalam molekulnya. Polifenol berperan dalam memberi warna pada suatu tumbuhan seperti warna daun saat musim gugur.


Pada beberapa penelitian disebutkan bahwa kelompok polifenol memiliki peran sebagai antioksidan yang baik untuk kesehatan. Antioksidan polifenol dapat mengurangi risiko penyakit jantung dan pembuluh darah dan kanker. [1]. Terdapat penelitian yang menyimpulkan polifenol dapat mengurangi risiko penyakit Alzheimer.[2]

Polifenol dapat ditemukan pada kacang-kacangan, teh hijau, teh putih, anggur merah, anggur putih, minyak zaitun dan turunannya, cokelat hitam, dan delima.

Kadar polifenol yang lebih tinggi dapat ditemukan pada kulit buah seperti pada anggur, apel, dan jeruk.

suber: www.wikipedia.org

Saporin


Saponin
Saponin adalah suatu glikosida yang mungkin ada pada
banyak macam tanaman. Saponin ada pada seluruh tanaman
dengan konsentrasi tinggi pada bagian-bagian tertentu, dan
dipengaruhi oleh varietas tanaman dan tahap pertumbuhan.
Fungsi dalam tumbuh-tumbuhan tidak diketahui, mungkin
sebagai bentuk penyimpanan karbohidrat, atau merupakan
waste product dari metabolisme tumbuh-tumbuhan. Ke-
mungkinan lain adalah sebagai pelindung terhadap serangan
serangga.


Sifat-sifat Saponin adalah:
1)
Mempunyai rasa pahit
2)
Dalam larutan air membentuk busa yang stabil
3)
Menghemolisa eritrosit
4)
Merupakan racun kuat untuk ikan dan amfibi
5)
Membentuk persenyawaan dengan kolesterol dan hidrok-
sisteroid lainnya
6)
Sulit untuk dimurnikan dan diidentifikasi
7)
Berat molekul relatif tinggi, dan analisis hanya menghasil-
kan formula empiris yang mendekati.

Toksisitasnya mungkin karena dapat merendahkan tegangan
permukaan (surface tension). Dengan hidrolisa lengkap akan
dihasilkan sapogenin (aglikon) dan karbohidrat (hexose,
pentose dan saccharic acid).

Berdasarkan atas sifat kimiawinya, saponin dapat dibagi
dalam dua kelompok:
1)
Steroids dengan 27 C atom.
2)
Triterpenoids, dengan 30 C atom.
Macam-macam saponin berbeda sekali komposisi kimiawi-
nya, yaitu berbeda pada aglikon (sapogenin) dan juga karbo-
hidratnya, sehingga tumbuh-tumbuhan tertentu dapat mem-
punyai macam-macam saponin yang berlainan, seperti:

Quillage saponin : campuran dari 3 atau 4 saponin

Alfalfa saponin : campuran dari paling sedikit 5 saponin

Soy bean saponin : terdiri dari 5 fraksi yang berbeda dalam sapogenin, atau karbohidratnya,
atau dalam kedua-duanya.
Kematian pada ikan, mungkin disebabkan oleh gangguan
pernafasan. Ikan yang mati karena racun saponin, tidak
toksik untuk manusia bila dimakan. Tidak toksiknya untuk
manusia dapat diketahui dari minuman seperti bir yang busanya
disebabkan oleh saponin.




sumber: www.kalbe.co.id






Alkaloid


Alkaloid adalah senyawa organik yang terdapat di alam bersifat basa atau alkali dan sifat basa ini disebabkan karena adanya atom N (Nitrogen) dalam molekul senyawa tersebut dalam struktur lingkar heterosiklik atau aromatis, dan dalam dosis kecil dapat memberikan efek farmakologis pada manusia dan hewan. Selain itu ada beberapa pengecualian, dimana termasuk golongan alkaloid tapi atom N (Nitrogen)nya terdapat di dalam rantai lurus atau alifatis.

Pada zaman dahulu, sumber utama alkaloid hanya terdapat pada tanaman berbunga saja (Angiospermae) tapi dalam dasawarsa terakhir ini, alkaloid juga ditemukan pada binatang baik yang terdapat di darat maupun di laut, pada serangga, tanaman rendah lainnya. bahkan mikroorganisme.
Agar lebih dipahami, alkaloid di bagi menjadi beberapa kelompok menurut atom Nitrogennya. Yaitu; Alkaloid sebenarnya, protoalkaloid dan pseudoalkaloid. Dan berdasarkan intinya penyusunnya (basa organiknya) diklasifikasikan menjadi 12 kelompok yaitu; Benzena, Piridina, Piperidina, Kuinolina, Isokuinolina, Fenantren, Pirolidina Siklo pentano perhidro fenantren, Imidazol, Indol, Purin dan Tropan. Bervariasinya skema untuk klasifikasi alkaloid didasarkan pada konstitusinya, telah disarankan dalam hal ini tata nama untuk alkaloid. Karena luasnya variasi kelompok alkaloid, akan tetapi tidak satu pun yang sangat memuaskan.

Flavonoid

Flavonoid adalah senyawa yang terdiri dari dari 15 atom karbon yang umumnya tersebar di dunia tumbuhan.Lebih dari 2000 flavonoid yang berasal dari tumbuhan telah diidentifikasi, namun ada tiga kelompok yang umum dipelajari, yaitu antosianin, flavonol, dan flavon.Antosianin (dari bahasa Yunani anthos , bunga dan kyanos, biru-tua) adalah pigmen berwarna yang umumnya terdapat di bunga berwarna merah, ungu, dan biru .Pigmen ini juga terdapat di berbagai bagian tumbuhan lain misalnya, buah tertentu, batang, daun dan bahkan akar. Flavnoid sering terdapat di sel epidermis.Sebagian besar flavonoid terhimpn di vakuola sel tumbuhan walaupun tempat sintesisnya ada di luar vakuola.


Fungsi

Antosianin dan flavonoid lainnya menarik perhatian banyak ahli genetika karena ada kemungkinan untuk menghubungkan berbagai perbedaan morfologi di antara spesies yang berkerabat dekat dalam satu genus misalnya dengan jenis flavonoid yang dikandungnya.[2] Flavonoid yang terdapat di spesies yang berkerabat dalam satu genus memberikan informasi bagi ahli taksonomi untuk megelompokkan dan menentukan garis evolusi tumbuhan itu.[2]

Cahaya khususnya panjang gelombang biru meningkatkan pembentukan flavonoid dan flavonoid meningkatkan resistensi tanaman terhadap radiasi UV.[2]

Quercetin dan myricetin, merupakan jenis flavonoid yang melindungi sel Caco-2 yang terdapat pada saluran pencernaan dari oksidasi rantai ganda DNA dan bersifat antioksidan yang melindungi kolonosit dari stress oksidatif.[3]




Sumber: www.wikipedia.org

Sunday, December 11, 2011

Garam di Laut



Garam di laut sangat berbeda dengan garam di atas meja Anda. Garam di laut sebenarnya merupakan larutan yang sangat kompleks dan mengandung lebih dari lima puluh garam mineral alami. Dalam air laut, kandungan sodium klorida (garam dapur) yang paling melimpah, sedangkan mineral lainnya dalam konsentrasi rendah antara lain garam kalsium (kalsium karbonat, magnesium sulfat, dan magnesium bromida). Tambahan lagi
ada sedimen terlarut dan batu-batuan dari dasar laut, materi dari sisa-sisa mahluk hidup yang mati dan air. Garam terlarut dibawa ke laut dari sungai dan aliran air, hampir 4 miliar ton per tahun.

Para ilmuwan berpkikir bahwa total jumlah garam di semua laut mungkin hampir 50 juta milyar ton. Konsentrasi garam pada kebanyakan air laut adalah tiga puluh lima per mil, yang berarti bahwa 3.5% berat air laut berasal dari garam terlarut.


Ikatan Kimia



Ikatan kimia adalah sebuah proses fisika yang bertanggung jawab dalam interaksi gaya tarik menarik antara dua atom atau molekul yang menyebabkan suatu senyawa diatomik atau poliatomik menjadi stabil. Penjelasan mengenai gaya tarik menarik ini sangatlah rumit dan dijelaskan oleh elektrodinamika kuantum. Dalam prakteknya, para kimiawan biasanya bergantung pada teori kuantum atau penjelasan kualitatif yang kurang kaku (namun lebih mudah untuk dijelaskan) dalam menjelaskan ikatan kimia. Secara umum, ikatan kimia yang kuat diasosiasikan dengan transfer elektron antara dua atom yang berpartisipasi. Ikatan kimia menjaga molekul-molekul, kristal, dan gas-gas diatomik untuk tetap bersama. Selain itu ikatan kimia juga menentukan struktur suatu zat.





Kekuatan ikatan-ikatan kimia sangatlah bervariasi. Pada umumnya, ikatan kovalen dan ikatan ion dianggap sebagai ikatan "kuat", sedangkan ikatan hidrogen dan ikatan van der Waals dianggap sebagai ikatan "lemah". Hal yang perlu diperhatikan adalah bahwa ikatan "lemah" yang paling kuat dapat lebih kuat daripada ikatan "kuat" yang paling lemah.

Elektron yang mengelilingi inti atom bermuatan negatif dan proton yang terdapat dalam inti atom bermuatan positif, mengingat muatan yang berlawanan akan saling tarik menarik, maka dua atom yang berdekatan satu sama lainnya akan membentuk ikatan.

Dalam gambaran yang paling sederhana dari ikatan non-polar atau ikatan kovalen, satu atau lebih elektron, biasanya berpasangan, ditarik menuju sebuah wilayah di antara dua inti atom. Gaya ini dapat mengatasi gaya tolak menolak antara dua inti atom yang positif, sehingga atraksi ini menjaga kedua atom untuk tetap bersama, walaupun keduanya masih akan tetap bergetar dalam keadaan kesetimbangan. Ringkasnya, ikatan kovalen melibatkan elektron-elektron yang dikongsi dan dua atau lebih inti atom yang bermuatan positif secara bersamaan menarik elektron-elektron bermuatan negatif yang dikongsi.

Dalam gambaran ikatan ion yang disederhanakan, inti atom yang bermuatan positif secara dominan melebihi muatan positif inti atom lainnya, sehingga secara efektif menyebabkan satu atom mentransfer elektronnya ke atom yang lain. Hal ini menyebabkan satu atom bermuatan positif dan yang lainnya bermuatan negatif secara keseluruhan. Ikatan ini dihasilkan dari atraksi elektrostatik di antara atom-atom dan atom-atom tersebut menjadi ion-ion yang bermuatan.



Saturday, December 10, 2011

Uranium




Uranium adalah suatu unsur kimia dalam tabel periodik yang memiliki lambang U dan nomor atom 92.. Ia merupakan logam putih keperakan yang termasuk dalam deret aktinida tabel periodik. Uranium memiliki 92 proton dan 92 elektron, dan berelektron valensi 6. Inti uranium mengikat sebanyak 141 sampai dengan 146 neutron, sehingganya terdapat 6 isotop uranium. Isotop yang paling umum adalah uranium-238 (146 neutron]] dan uranium-235 (143 neutron). Semua isotop uranium tidak stabil dan bersifat radioaktif lemah. Uranium memiliki bobot atom terberat kedua di antara semua unsur-unsur kimia yang dapat ditemukan secara alami.[3] Massa jenis uranium kira-kira 70% lebih besar daripada timbal, namun tidaklah sepadat emas ataupun tungsten. Uranium dapat ditemukan secara alami dalam konsentrasi rendah (beberapa bagian per juta (ppm)) dalam tanah, bebatuan, dan air.

Uranium yang dapat dijumpai secara alami adalah uranium-238 (99,2742%), uranium-235 (0,7204%), dan sekelumit uranium-234 (0,0054%). Uranium meluruh secara lambat dengan memancarkan partikel alfa. Umur paruh uranium-238 adalah sekitar 4,47 milyar tahun, sedangkan untuk uranium-235 adalah 704 juta tahun.[4] Oleh sebab itu, uranium dapat digunakan untuk penanggalan umur Bumi.

Uranium-235 merupakan satu-satunya isotop unsur kimia alami yang bersifat fisil (yakni dapat mempertahankan reaksi berantai pada fusi nuklir), sedangkan uranium-238 dapat dijadikan fisil menggunakan neutron cepat. Selain itu, uranium-238 juga dapat ditransmutasikan menjadi plutonium-239 yang bersifat fisil dalam reaktor nuklir. Isotop uranium lainnya yang juga bersifat fisil adalah uranium-233, yang dapat dihasilkan dari torium.

Alkali Tanah


Logam alkali tanah terdiri dari 6 unsur yang terdapat di golongan IIA. Yang termasuk ke dalam golongan II A yaitu : Berilium (Be), Magnesium (Mg), Calcium (Ca), Stronsium (Sr), Barium (Ba), dan Radium (Ra). Di sebut logam karena memiliki sifat-sifat seperti logam. Disebut alkali karena mempunyai sifat alkalin atau basa jika direaksikan dengan air. Dan istilah tanah karena oksidasinya sukar larut dalam air, dan banyak ditemukan dalam bebatuan di kerak bumi.


Tiap logam memiliki konfigurasi elektron sama seperti gas mulia atau golongan VIII A, setelah di tambah 2 elektron pada lapisan kulit S paling luar. Contohnya konfigurasi elektron pada Magnesium (Mg) yaitu : 1s22s22p63s2 atau (Ne) 3s2. Ikatan yang dimiliki kebanyakan senyawa logam alkali tanah adalah ikatan ionik. Karena, elektron paling luarnya telah siap untuk di lepaskan, agar mencapai kestabilan.

Unsur alkali tanah memiliki reaktifitas tinggi, sehingga tidak ditemukan dalam bentuk monoatomik , unsur ini mudah bereaksi dengan oksigen, dan logam murni yang ada di udara, membentuk lapisan luar pada oksigen.

2. SIFAT-SIFAT PERIODIK UNSUR

 Jari-Jari Atom adalah jarak dari inti atom sampai ke elektron di kulit terluar. Besarnya jari-jari atom dipengaruhi oleh besarnya nomor atom unsur tersebut. Semakin besar nomor atom unsur-unsur segolongan, semakin banyak pula jumlah kulit elektronnya, sehingga semakin besar pula jari-jari atomnya. Jadi, dalam satu golongan (dari atas ke bawah), jari-jari atomnya semakin besar. Dalam satu periode (dari kiri ke kanan), nomor atomnya bertambah yang berarti semakin bertambahnya muatan inti, sedangkan jumlah kulit elektronnya tetap. Akibatnya tarikan inti terhadap elektron terluar makin besar, sehingga menyebabkan semakin kecilnya jari-jari atom.

 Jari-Jari Ion. Ion mempunyai jari-jari yang berbeda secara nyata jika dibandingkan dengan jari-jari atom normalnya. Ion bermuatan positif (kation) mempunyai jari-jari yang lebih kecil, sedangkan ion bermuatan negatif (anion) mempunyai jari-jari yang lebih besar jika dibandingkan dengan jari-jari atom normalnya.

 Energi Ionisasi (EI) adalah energi yang diperlukan atom dalam untuk melepaskan satu elektron sehingga membentuk ion bermuatan +1. Jika atom tersebut melepaskan elektronnya yang ke-2 maka akan diperlukan energi yang lebih besar, begitu juga pada pelepasan elektron yang ke-3 dan seterusnya. Maka EI 1< EI 2 < EI 3. Dalam satu golongan (dari atas ke bawah), EI semakin kecil karena jari-jari atom bertambah sehingga gaya tarik inti terhadap elektron terluar semakin kecil. Akibatnya elektron terluar semakin mudah untuk dilepaskan. Dalam satu periode (dari kiri ke kanan), EI semakin besar karena jari-jari atom semakin kecil sehingga gaya tarik inti terhadap elektron terluar semakin besar. Akibatnya elektron terluar semakin sulit untuk dilepaskan.  Afinitas Elektron adalah energi yang dilepaskan oleh atom apabila menerima sebuah elektron untuk membentuk ion negatif. Semakin negatif harga afinitas elektron, semakin mudah atom tersebut menerima elektron dan unsurnya akan semakin reaktif. Dalam satu golongan (dari atas ke bawah), harga afinitas elektronnya semakin kecil. Dan dalam satu periode (dari kiri ke kanan), harga afinitas elektronnya semakin besar. Unsur golongan utama memiliki afinitas elektron bertanda negatif, kecuali golongan IIA dan VIIIA. Afinitas elektron terbesar dimiliki oleh golongan VIIA.  Keelektronegatifan adalah kemampuan suatu unsur untuk menarik elektron dalam molekul suatu senyawa. Harga keelektronegatifan ini diukur dengan menggunakan skala Pauling yang besarnya antara 0,7 sampai 4. Unsur yang mempunyai harga keelektronegatifan besar, cenderung menerima elektron dan akan membentuk ion negatif. Sedangkan unsur yang mempunyai harga keelektronegatifan kecil, cenderung melepaskan elektron dan akan membentuk ion positif. Dalam satu golongan (dari atas ke bawah), harga keelektronegatifan semakin kecil. Dan dalam satu periode (dari kiri ke kanan), harga keelektronegatifan semakin besar.  Sifat Logam dan Non Logam. Sifat logam berhubungan dengan keelektropositifan, yaitu kecenderungan atom untuk melepaskan elektron membentuk kation. Sifat logam bergantung pada besarnya energi ionisasi (EI). Makin besar harga EI, makin sulit bagi atom untuk melepaskan elektron dan makin berkurang sifat logamnya. Sifat non logam berhubungan dengan keelektronegatifan, yaitu kecenderungan atom untuk menarik elektron. Dalam satu periode (dari kiri ke kanan), sifat logam berkurang sedangkan sifat non logam bertambah. Dalam satu golongan (dari atas ke bawah), sifat logam bertambah sedangkan sifat non logam berkurang. Unsur logam terletak pada bagian kiri-bawah dalam sistem periodik unsur, sedangkan unsur non logam terletak pada bagian kanan-atas. Unsur-unsur yang terletak pada daerah peralihan antara unsur logam dengan non logam disebut unsur metaloid. Metalloid adalah unsur yang mempunyai sifat logam dan non logam.  Kereaktifan. Kereaktifan bergantung pada kecenderungan unsur untuk melepas atau menarik elektron. Dalam satu periode (dari kiri ke kanan), mula-mula kereaktifan menurun, tapi akan semakin bertambah hingga golongan alkali tanah (VIIA). Beberapa Sifat Umum Logam Alkali Tanah Sifat Umum Be Mg Ca Sr Ba Nomor Atom 4 12 20 38 56 Konfigurasi Elektron [He] 2s2 [Ne] 3s2 [Ar] 4s2 [Kr] 5s2 [Xe] 6s2 Titik Leleh 1553 923 1111 1041 987 Titik Didih 3043 1383 1713 1653 1913 Jari-jari Atom (Angstrom) 1.12 1.60 1.97 2.15 2.22 Jari-jari Ion (Angstrom) 0.31 0.65 0.99 1.13 1.35 Energi Ionisasi I (KJ mol-1) 900 740 590 550 500 Energi Ionisasi II (KJ mol-1) 1800 1450 1150 1060 970 Elektronegativitas 1.57 1.31 1.00 0.95 0.89 Potensial Elektrode (V) M2+ + 2e à M -1.85 -2.37 -2.87 -2.89 -2.90 Massa Jenis (g mL-1) 1.86 1.75 1.55 2.6 3.6 Sifat umum logam Alkali Tanah 1. berwujud padat Konfigurasi elektronnya menunjukan bahwa logam alkali tanah mempunyai elektron valensi ns2. Selain jari-jari atomnya yang lebih kecil dibandingkan logam alkali, kedua elektron valensinya yang telah berpasangan mengakibatkan energi ionisasi logam alkali tanah lebih tinggi daripada alkali. 2. Meskipun energi ionisasinya tinggi, tetapi karena energi hidrasi dari ion M2+ dari alkali tanah lebih besar daripada energi hidrasi ion M+ dari alkali, mengakibatkan logam alkali tetap mudah melepaskan kedua elektron valensinya, sehingga lebih stabil sebagai ion M2+. 3. Jari-jari atomnya yang lebih kecil dan muatan intinya yang lebih besar mengakibatkan logam alkali tanah membentuk kristal dengan susunan yang lebih rapat, sehingga mempunyai sifat yang lebih keras daripada logam alkali dan massa jenisnya lebih tinggi. 4. Berilium mempunyai energi ionisasi yang sangat tinggi dan keelektronegatifan yang cukup besar, kedua hal ini menyebabkan berilium dalam berikatan cenderung membentuk ikatan kovalen. 5. Potensial elektrode standar logam alkali tanah menunjukkan harga yang rendah (negatif). Hal ini menunjukkan bahwa logam alkali tanah merupakan reduktor yang cukup kuat, bahkan kalsium, stronsium, dan barium mempunyai daya reduksi yang lebih kuat daripada natrium. 6. Titik didih dan titik leleh logam alkali tanah lebih tinggi daripada suhu ruangan. Oleh karena itu, unsur-unsur logam alkali tanah pada suhu ruangan. 3. GOLONGAN ALKALI TANAH 1. Be (Berilium) 4 litium ← berilium → boron - - ↑ Be ↓ Mg Berilium adalah unsur kimia yang mempunyai simbol Be dan nomor atom 4. Unsur ini beracun, bervalensi 2, berwarna abu-abu baja, kukuh, ringan tetapi mudah pecah. Berilium adalah logam alkali tanah, yang kegunaan utamanya adalah sebagai bahan penguat dalam alloy (khususnya, tembaga berilium).  Sifat-sifat Berilium mempunyai titik lebur tertinggi di kalangan logam-logam ringan. Modulus kekenyalan berilium kurang lebih 1/3 lebih besar daripada besi baja. Berilium mempunyai konduktivitas panas yang sangat baik, tak magnetik dan tahan karat asam nitrat. Berilium juga mudah ditembus sinar-X, dan neutron dibebaskan apabila ia dihantam oleh partikel alfa, (seperti radium dan polonium [lebih kurang 30 neutron-neutron/juta partikel alfa]). Pada suhu dan tekanan ruang, berilium tak teroksidasi apabila terpapar udara (kemampuannya untuk menggores kaca kemungkinan disebabkan oleh pembentukan lapisan tipis oksidasi).  Kegunaan • Berilium digunakan sebagai agen aloy di dalam pembuatan tembaga berilium. (Be dapat menyerap panas yang banyak). Aloy tembaga-berilium digunakan dalam berbagai kegunaan karena konduktivitas listrik dan konduktivitas panas, kekuatan tinggi dan kekerasan, sifat yang nonmagnetik, dan juga tahan karat serta tahan fatig (logam). Kegunaan-kegunaan ini termasuk pembuatan: mold, elektroda pengelasan bintik, pegas, peralatan elektronik tanpa bunga api dan penyambung listrik. • Karena ketegaran, ringan, dan kestabilan dimensi pada jangkauan suhu yang lebar, Alloy tembaga-berilium digunakan dalam industri angkasa-antariksa dan pertahanan sebagai bahan penstrukturan ringan dalam pesawat berkecepatan tinggi, peluru berpandu, kapal terbang dan satelit komunikasi. • Kepingan tipis berilium digunakan bersama pemindaian sinar-X untuk menepis cahaya tampak dan memperbolehkan hanya sinaran X yang terdeteksi. • Dalam bidang litografi sinar X, berilium digunakan untuk pembuatan litar bersepadu mikroskopik. • Karena penyerapan panas neutron yang rendah, industri tenaga nuklir menggunakan logam ini dalam reaktor nuklir sebagai pemantul neutron dan moderator. • Berilium digunakan dalam pembuatan giroskop, berbagai alat komputer, pegas jam tangan dan peralatan yang memerlukan keringanan, ketegaran dan kestabilan dimensi. • Berilium oksida sangat berguna dalam berbagai kegunaan yang memerlukan konduktor panas yang baik, dan kekuatan serta kekerasan yang tinggi, dan juga titik lebur yang tinggi, seterusnya bertindak sebagai perintang listrik. • Campuran berilium pernah pada satu ketika dahulu digunakan dalam lampu floresens, tetapi penggunaan tersebut tak dilanjutkan lagi karena pekerja yang terpapar terancam bahaya beriliosis.  Wawasan Berilium dan garamnya adalah bahan beracun dan berpotensi sebagai zat karsinogenik. Beriliosis kronik adalah penyakit granulomatus pulmonari dan sistemik yang disebabkan oleh paparan terhadap berilium. Penyakit berilium akut dalam bentuk pneumonitis kimia pertama kali dilaporkan di Eropa pada tahun 1933 dan di Amerika Serikat pada tahun 1943. Kasus beriliosis kronik pertama kali diperincikan dalam tahun 1946 di kalangan pekerja dalam kilang penghasilan lampu kalimantan. Beriliosis kronik menyerupai sarkoidisis dalam berbagai hal, dan diagnosis pembedaan adalah sulit. Walaupun penggunaan campuran berilium dalam lampu floresens telah dihentikan pada tahun 1949, kemungkinan pemaparan berilium masih dapat mungkin terjadi di industri nuklir, penerbangan, pemurnian logam berilium, peleburan Alloy berkandungan berilium, pembuatan alat elektronik dan pengurusan bahan yang mengandung berilium. Pengkaji awal mencicipi berilium dan campuran-campurannya yang lain untuk rasa kemanisan untuk memastikan kehadirannya. Alat penguji canggih tidak lagi memerlukan prosedur beresiko tinggi ini dan percobaan untuk memakan bahan ini tidak patut dilakukan. Berilium dan campurannya harus dikendalikan dengan rapi dan pengawasan harus dijalankan ketika melakukan kegiatan yang memungkinkan pelepasan debu berilium (kanker paru paru adalah salah satu dari akibat yanhg dapat ditimbulkan oleh pemaparan berpanjangan terhadap habuk berilium). Berilium ini harus dikendalikan dengan hati-hati dan prosedur tertentu harus dipatuhi. Tidak sepatutnya ada percobaan menggunakan berilium sebelum prosedur pengendalian yang tepat diperkenalkan dan dibiasakan.  Pengaruh Kesehatan Berilium adalah sangat berbahaya jika terhirup. Keefektivannya tergantung kepada kandungan yang dipaparkan dan jangka waktu pemaparan. Jika kandungan berilium di udara sangat tinggi (lebih dari 1000 μg/m³), keadaan akut dapat terjadi. Keadaan ini menyerupai pneumonia dan disebut penyakit berilium akut. Penetapan udara komunitas dan tempat kerja effektif dalam menghindari kerusakan paru-paru yang paling akut. Sebagian orang (1-15%) akan menjadi sensitif terhadap berilium. Orang-orang ini akan mendapat tindak balas keradangan pada sistem pernafasan. Keadaan ini disebut penyakit berilium kronik (CBD), dan dapat terjadi setelah pemamparan bertahun-tahun terhadap tingkat berilium diatas normal (diatas 0.2 μg/m³). Penyakit ini dapat menyebabkan rasa lemah dan keletihan, dan juga sasak nafas. CBD dapat menyebabkan anoreksia, penyusutan berat badan, dan dapat juga menyebabkan pembesaran bagian kanan jantung dan penyakit jantung dalam kasus-kasus peringkat lanjut. Sebagian orang yang sensitif kepada berilium mungkin atau mungkin tidak akan mendapat simptom-simptom ini. Jumlah penduduk pada umumnya jarang mendapat penyakit berilium akut atau kronik Karena kandungan berilium dalam udara biasanya sangat rendah (0.00003-0.0002 μg/m³). Menelan berilium tidak pernah dilaporkan menyebabkan efek kepada manusia Karena berilium diserap sangat sedikit oleh perut dan usus. Berilium yang terkena kulit yang mempunyai luka atau terkikis mungkin akan menyebabkan radang. United States Department of Health and Human Services (DHHS) dan International Agency for Research on Cancer (IARC) telah memberi kepastian bahawa berilium adalah karsinogen. EPA menjangkakan bahawa pemamparan seumur hidup kepada 0.04 μg/m³ berilium dapat menyebabkan satu perseribu kemungkinan untuk mengidap kanker. Tidak terdapat kajian tentang efek pemamparan berilium terhadap anak-anak. Kemungkinan, pengaruh kesehatan yang dilihat pada kanak-kanak yang terpapar terhadap berilium sama dengan efeknya terhadap orang dewasa. Masih belum diketahui perbedaan dalam efek berilium antara orang dewasa dan kanak-kanak. Masih belum diketahui juga apakah pemamparan terhadap berilium dapat menyebabkan kecacatan sejak lahir atau efek-efek lain yang berlanjutan kepada orang ramai. Kajian terhadap kesan lanjutan terhadap hewan tidak dapat dipastikan. Berilium dapat diukur dalam air kencing atau darah. Kandungan berilium dalam darah atau air kencing dapat memberi petunjuk kepada berapa banyak atau berapa lama seseorang telah terpapar. Tingkat kandungan berilium juga dapat diukur dari sampel paru-paru dan kulit. Satu lagi ujian darah, yaitu beryllium lymphocyte proliferation test (BeLPT), mengukur pasti kesensitifan terhadap berilium dan memberikan jangkaan terhadap CBD. Batas Kandungan berilium yang mungkin dilepaskan ke dalam udara dari kawasan perindustrian adalah 0.01 μg/m³, Dirata-ratakan pada jangka waktu 30 hari, atau 2 μg/m³ dalam ruang kerja dengan shift kerja 8 jam. Keterangan Umum Unsur Nama, Lambang, Nomor atom Berilium, Be, 4 Deret kimia Logam alkali tanah Golongan, Periode, Blok 2, 2, s Penampilan Putih-kelabu metalik Massa atom 9,012182(3) g/mol Konfigurasi elektron 1s2 2s2 Jumlah elektron tiap kulit 2, 2 Ciri-ciri fisik Fase padat Massa jenis (sekitar suhu kamar) 1,85 g/cm³ Massa jenis cair pada titik lebur 1,690 g/cm³ Titik lebur 1560 K (1287 °C, 2349 °F) Titik didih 2742 K (2469 °C, 4476 °F) Kalor peleburan 7,895 kJ/mol Kalor penguapan 297 kJ/mol Kapasitas kalor (25 °C) 16,443 J/(mol•K) Tekanan uap P/Pa 1 10 100 1k 10k 100k pada T/K 1462 1608 1791 2023 2327 2742 Ciri-ciri atom Struktur kristal Heksagonal Bilangan oksidasi 2 (oksida amfoter) Elektronegativitas 1,57 (skala Pauling) Energi ionisasi 1st: 899,5 kJ/mol 2nd: 1757,1 kJ/mol 3rd: 14848,7 kJ/mol Jari-jari atom 105 pm Jari-jari atom (terhitung) 112 pm Jari-jari kovalen 90 pm 2. Magnesium (Mg) 12 natrium ← magnesium → aluminium Be ↑ Mg ↓ Ca Magnesium adalah unsur kimia dalam tabel periodik yang memiliki simbol Mg dan nomor atom 12 serta berat atom 24,31. Magnesium adalah elemen terbanyak kedelapan yang membentuk 2% berat kulit bumi, serta merupakan unsur terlarut ketiga terbanyak pada air laut. Logam alkali tanah ini terutama digunakan sebagai zat campuran (alloy) untuk membuat campuran alumunium-magnesium yang sering disebut “magnalium” atau “magnelium”. Keterangan Umum Unsur Nama, Lambang, Nomor atom magnesium, Mg, 12 Deret kimia alkali tanah Golongan, Periode, Blok 2, 3, s Penampilan putih keperakan Massa atom 24.3050(6) g/mol Konfigurasi elektron [Ne] 3s2 Jumlah elektron tiap kulit 2, 8, 2 Ciri-ciri fisik Fase padat Massa jenis (sekitar suhu kamar) 1.738 g/cm³ Massa jenis cair pada titik lebur 1.584 g/cm³ Titik lebur 923 K (650 °C, 1202 °F) Titik didih 1363 K (1090 °C, 1994 °F) Kalor peleburan 8.48 kJ/mol Kalor penguapan 128 kJ/mol Kapasitas kalor (25 °C) 24.869 J/(mol•K) Tekanan uap P/Pa 1 10 100 1k 10k 100k pada T/K 701 773 861 971 1132 1361 Ciri-ciri atom Struktur kristal segi enam Bilangan oksidasi 2 (oksida dasar yang kuat) Elektronegativitas 1.31 (skala Pauling) Energi ionisasi 1st: 737.7 kJ/mol 2nd: 1450.7 kJ/mol 3rd: 7732.7 kJ/mol Jari-jari atom 150 pm Jari-jari atom (terhitung) 145 pm Jari-jari kovalen 130 pm Jari-jari Van der Waals 173 pm 3. Ca (Kalsium) 20 kalium ← kalsium → skandium Mg ↑ Ca ↓ Sr Kalsium adalah mineral yang amat penting bagi manusia, antara lain bagi metabolisme tubuh, penghubung antar saraf, kerja jantung, dan pergerakan otot.  Berikut beberapa manfaat kalsium bagi manusia: • Mengaktifkan saraf • Melancarkan peredaran darah • Melenturkan otot • Menormalkan tekanan darah • Menyeimbangkan tingkat keasaman darah • Menjaga keseimbangan cairan tubuh • Mencegah osteoporosis (keropos tulang) • Mencegah penyakit jantung • Menurunkan resiko kanker usus • Mengatasi kram, sakit pinggang, wasir, dan reumatik • Mengatasi keluhan saat haid dan menopause • Meminimalkan penyusutan tulang selama hamil dan menyusui • Membantu mineralisasi gigi dan mencegah pendarahan akar gigi • Mengatasi kering dan pecah-pecah pada kulit kaki dan tangan • Memulihkan gairah seks yang menurun/melemah • Mengatasi kencing manis (mengaktifkan pankreas)  Wawasan Setelah umur 20 tahun, tubuh manusia akan mulai mengalami kekurangan kalsium sebanyak 1% per tahun. Dan setelah umur 50 tahun, jumlah kandungan kalsium dalam tubuh akan menyusut sebanyak 30%. Kehilangan akan mencapai 50% ketika mencapai umur 70 tahun dan seterusnya mengalami masalah kekurangan kalsium. Gejala awal kekurangan kalsium adalah seperti lesu, banyak keringat, gelisah, sesak napas, menurunnya daya tahan tubuh, kurang nafsu makan, sembelit, berak-berak, insomnia, kram, dsb. Informasi umum Nama, Lambang, Nomor atom Kalsium, Ca, 20 Deret kimia Logam alkali tanah Golongan, Periode, Blok 2, 4, s Penampilan putih keperakan Massa atom 40,078(4)g•mol−1 Konfigurasi electron [Ar] 4s2 Jumlah elektron tiap kulit 2, 8, 8, 2 Sifat fisika Fase Padat Massa jenis (mendekati suhu kamar) 1,55 g•cm−3 Massa jenis cairan pada titik didih 1,378 g•cm−3 Titik leleh 1115 K (842 °C, 1548 °F) Titik didih 1757 K (1484 °C, 2703 °F) Kalor peleburan 8,54 kJ•mol−1 Kalor penguapan 154,7 kJ•mol−1 Kapasitas kalor (25 °C) 25,929 J•mol−1•K−1 Tekanan uap P/Pa 1 10 100 1 k 10 k 100k pada T/K 864 956 1071 1227 1443 1755 Sifat atom Struktur kristal kubik berpusat muka Bilangan oksidasi 2 (oksida dasar yang kuat) Elektronegativitas 1,00 (Skala Pauling) Energi ionisasi 1st: 589,8 kJ•mol−1 2nd: 1145,4 kJ•mol−1 3rd: 4912,4 kJ•mol−1 Jari-jari atom 180 pm Jari-jari atom (perhitungan) 194 pm Jari-jari kovalen 174 pm 4. Sr (Stronsium) 38 rubidium ← strontium → yettrium Ca ↑ Sr ↓ Ba Stronsium adalah suatu unsur kimia dalam tabel periodik yang memiliki lambang Sr dan nomor atom 38. Sebagai salah satu anggota dari golongan logam alkali tanah, stronsium adalah unsur perak-putih atau kuning metalik yang sangat reaktif. Logam ini berubah warna menjadi kuning ketika berbaur dengan udara dan terjadi pada celestite dan strontianite. 90Sr di sajikan pada daftar golongan radioaktif dan mempunyai waktu paruh selama 2890 tahun. Keterangan Umum Unsur Nama, Lambang, Nomor atom stronsium, Sr, 38 Deret kimia Golongan alkali tanah Golongan, Periode, Blok 2, 5, s Penampilan Perak-putih-metalik Massa atom 87.62(1) g/mol Konfigurasi elektron [Kr] 5s2 Jumlah elektron tiap kulit 2, 8, 18, 8, 2 Ciri-ciri fisik Fase padat Massa jenis (sekitar suhu kamar) 2.64 g/cm³ Massa jenis cair pada titik lebur 6.980 g/cm³ Titik lebur 1050 K (777 °C, 1431 °F) Titik didih 1655 K (1382 °C, 2520 °F) Kalor peleburan 7.43 kJ/mol Kalor penguapan 136.9 kJ/mol Kapasitas kalor (25 °C) 26.4 J/(mol•K) Tekanan uap P/Pa 1 10 100 1k 10k 100k pada T/K 769 882 990 1139 1345 1646 Ciri-ciri atom Struktur kristal kubik berpusat muka Bilangan oksidasi 2 (oksidasi basa kuat) Elektronegativitas 0.95 (skala Pauling) Energi ionisasi 1st: 549.5 kJ/mol 2nd: 1064.2 kJ/mol 3rd: 4138 kJ/mol Jari-jari atom 200 pm Jari-jari atom (terhitung) 219 pm Jari-jari kovalen 192 pm 5. Ba (Barium) 56 sesium ← barium → lanthanum Sr ↑ Ba ↓ Ra Barium adalah suatu unsur kimia dalam tabel periodik yang memiliki lambang Ba dan nomor atom 56. Keterangan Umum Unsur Nama, Lambang, Nomor atom barium, Ba, 56 Deret kimia Logam alkali tanah Golongan, Periode, Blok 2, 6, s Penampilan Putih keperakan Massa atom 137.327(7) g/mol Konfigurasi elektron [Xe] 6s2 Jumlah elektron tiap kulit 2, 8, 18, 18, 8, 2 Ciri-ciri fisik Fase Padat Massa jenis (sekitar suhu kamar) 3.51 g/cm³ Massa jenis cair pada titik lebur 3.338 g/cm³ Titik lebur 1000 K (727 °C, 1341 °F) Titik didih 2170 K (1897 °C, 3447 °F) Kalor peleburan 7.12 kJ/mol Kalor penguapan 140.3 kJ/mol Kapasitas kalor (25 °C) 28.07 J/(mol•K) Tekanan uap P/Pa 1 10 100 1k 10k 100k pada T/K 911 1038 1185 1388 1686 2170 Ciri-ciri atom Struktur kristal Kubik berpusat badan Bilangan oksidasi 2 (oksidasi dasar yang kuat) Elektronegativitas 0.89 (skala Pauling) Energi ionisasi 1st: 502.9 kJ/mol 2nd: 965.2 kJ/mol 3rd: 3600 kJ/mol Jari-jari atom 215 pm Jari-jari atom (terhitung) 253 pm Jari-jari kovalen 198 pm 6. Ra (Radium) 88 fransium ← radium → aktinium Ba ↑ Ra ↓ Ubn Radium adalah sebuah unsur kimia yang mempunyai simbol Ra dan nomor atom 88 (lihat tabel periodik). Radium berwarna hampir putih bersih, namun akan teroksidasi jika terekspos kepada udara dan berubah menjadi hitam. Radium mempunyai tingkat radioaktivitas yang tinggi. Isotopnya yang paling stabil, Ra-226, mempunyai waktu paruh selama 1602 tahun dan kemudian berubah menjadi gas radon. Keterangan Umum Unsur Nama, Lambang, Nomor atom radium, Ra, 88 Deret kimia alkali tanah Golongan, Periode, Blok 2, 7, s Penampilan metalik putih keperak-perakan Massa atom (226) g/mol Konfigurasi elektron [Rn] 7s2 Jumlah elektron tiap kulit 2, 8, 18, 32, 18, 8, 2 Ciri-ciri fisik Fase padat Massa jenis (sekitar suhu kamar) 5,5 g/cm³ Titik lebur 973 K (700 °C, 1292 °F) Titik didih 2010 K (1737 °C, 3159 °F) Kalor peleburan 8,5 kJ/mol Kalor penguapan 113 kJ/mol Tekanan uap P/Pa 1 10 100 1k 10k 100k pada T/K 819 906 1037 1209 1446 1799 Ciri-ciri atom Struktur kristal Kubik berpusat badan Bilangan oksidasi 2 (oksida basa) Elektronegativitas 0,9 (skala Pauling) Energi ionisasi 1st: 509,3 kJ/mol 2nd: 979,0 kJ/mol Jari-jari atom 215 pm 4. REAKSI-REAKSI LOGAM ALKALI TANAH a. Reaksi Logam Alkali Tanah dengan Air Berilium tidak bereaksi dengan air, sedangkan logam Magnesium bereaksi sangat lambat dan hanya dapat bereaksi dengan air panas. Logam Kalsium, Stronsium, Barium, dan Radium bereaksi sangat cepat dan dapat bereaksi dengan air dingin. Contoh reaksi logam alkali tanah dan air berlangsung sebagai berikut. Ca(s) + 2H2O(l) → Ca(OH)2(aq) + H2(g) b. Reaksi Logam Alkali Tanah dengan Oksigen Dengan pemanasan, Berilium dan Magnesium dapat bereaksi dengan oksigen. Oksida Berilium dan Magnesium yang terbentuk akan menjadi lapisan pelindung pada permukaan logam.Barium dapat membentuk senyawa peroksida (BaO2). 2Mg(s) + O2 (g) → 2MgO(s) (s) + O2(g) (berlebihan) → BaO2(s) Pembakaran Magnesium di udara dengan Oksigen terbatas pada suhu tinggi akan dapat menghasilkan Magnesium Nitrida (Mg3N2). 4Mg(s) + ½ O2(g) + N2 (g) → MgO(s) + Mg3N2(s) Bila Mg3N2 direaksikan dengan air maka akan didapatkan gas NH3. Mg3N2(s) + 6H2O(l) → 3Mg(OH)2(s) + 2NH3(g) c. Reaksi Logam Alkali Tanah dengan Nitrogen Logam alkali tanah yang terbakar di udara akan membentuk senyawa oksida dan senyawa Nitrida dengan demikian Nitrogen yang ada di udara bereaksi juga dengan Alkali Tanah. Contoh : 3Mg(s) + N2(g) → Mg3N2(s) d. Reaksi Logam Alkali Tanah dengan Halogen Semua logam Alkali Tanah bereaksi dengan halogen dengan cepat membentuk garam Halida, kecuali Berilium. Oleh karena daya polarisasi ion Be2+ terhadap pasangan elektron Halogen kecuali F-, maka BeCl2 berikatan kovalen. Sedangkan alkali tanah yang lain berikatan ion. Contoh : Ca(s) + Cl2(g) → CaCl2(s) Reaksi-Reaksi Logam Alkali Tanah Reaksi secara umum Keterangan 2M(s) + O2(g) à 2MO(s) Reaksi selain Be dan Mg tak perlu Pemanasan M(s) + O2(g) à MO2 (s) Ba mudah, Sr dengan tekanan tinggi, Be, Mg, dan Ca, tidak terjadi M(s) + X2(g) à MX2 (s) X: F, Cl, Br, dan I M(s) + S(s) à MS (s) M(s) + 2H2O (l) à M(OH)2 (aq) + H2 (g) Be tidak dapat, Mg perlu pemanasan 3M(s) + N2 (g) à M3N2 (s) Reaksi berlangsung pada suhu tinggi, Be tidak dapat berlangsung M(s) + 2H+(aq) à M2+(aq) + H2 (g) Reaksi cepat berlangsung M(s) + H2 (g) à MH2 (s) Perlu pemanasan, Be dan Mg tidak dapat berlangsung 5. PROSES EKSTRAKSI LOGAM ALKALI TANAH Ekstraksi adalah pemisahan suatu unsur dari suatu senyawa. Logam alkali tanah dapat di ekstraksi dari senyawanya. Untuk mengekstraksinya kita dapat menggunakan dua cara, yaitu metode reduksi dan metode elektrolisis. 1. Ekstraksi Berilium (Be) a. Metode reduksi Untuk mendapatkan Berilium, bisa didapatkan dengan mereduksi BeF2. Sebelum mendapatkan BeF2, kita harus memanaskan beril [Be3Al2(SiO6)3] dengan Na2SiF¬6 hingga 700 0C. Karena beril adalah sumber utama berilium. BeF¬2 + Mg à MgF2 + Be b. Metode Elektrolisis Untuk mendapatkan berilium, kita juga dapat mengekstraksi dari lelehan BeCl2 yang telah ditambah NaCl. Karena BeCl¬2 tidak dapat mengahantarkan listrik dengan baik, sehingga ditambahkan NaCl. Reaksi yang terjadi adalah : Katoda : Be2+ + 2e- à Be Anode : 2Cl- à Cl2 + 2e- 2. Ekstraksi Magnesium (Mg) a. Metode Reduksi Untuk mendapatkan magnesium, kita dapat mengekstraksinya dari dolomite [MgCa(CO3)2]. Karena dolomite merupakan salah satu sumber yang dapat menhasilkan magnesium. Dolomite dipanaskan sehingga terbentuk MgO.CaO lalu MgO.CaO dipanaskan dengan FeSi sehingga menhasilkan Mg. 2[ MgO.CaO] + FeSi à 2Mg + Ca2SiO4 + Fe b. Metode Elektrolisis Selain dengan ekstraksi dolomite magnesium juga bisa didapatkan dengan mereaksikan air alut dengan CaO. Reaksi yang terjadi : CaO + H2O à Ca2+ + 2OH- Mg2+ + 2OH- à Mg(OH)2 Selanjutnya Mg(OH)2 direaksikan dengan HCl Untuk membentuk MgCl2 Mg(OH)2 + 2HCl à MgCl2 + 2H2O Setelah mendapatkan lelehan MgCl2 kita dapat mengelektrolisisnya untuk mendapatkan magnesium. Katode : Mg2+ + 2e- à Mg Anode : 2Cl- à Cl2 + 2e- 3. Ekstraksi Kalsium (Ca) a. Metode Elektrolisis Batu kapur (CaCO3) adalah sumber utama untuk mendapatkan kalsium (Ca). Untuk mendapatkan kalsium, kita dapat mereaksikan CaCO3 dengan HCl agar terbentuk senyawa CaCl2. Reaksi yang terjadi : CaCO3 + 2HCl à CaCl2 + H2O + CO2 Setelah mendapatkan CaCl2, kita dapat mengelektrolisisnya agar mendapatkan kalsium (Ca). Reaksi yang terjadi : Katode : Ca2+ + 2e- à Ca Anode : 2Cl- à Cl2 + 2e- b. Metode Reduksi Logam kalsium (Ca) juga dapat dihasilkan dengan mereduksi CaO oleh Al atau dengan mereduksi CaCl2¬ oleh Na. Reduksi CaO oleh Al. 6CaO + 2Al à 3 Ca + Ca3Al2O6 Reduksi CaCl2 oleh Na CaCl2 + 2 Na à Ca + 2NaCl 4. Ekstraksi Strontium (Sr) a. Metode Elektrolisis Untuk mendapatkan Strontium (Sr), kita bisa mendapatkannya dengan elektrolisis lelehan SrCl2¬. Lelehan SrCl2 bisa didapatkan dari senyawa selesit [SrSO4]. Karena Senyawa selesit merupakan sumber utama Strontium (Sr). Reaksi yang terjadi : katode : Sr2+ +2e- à Sr anode : 2Cl- à Cl2 + 2e- 5. Ekstraksi Barium (Ba) a. Metode Elektrolisis Barit (BaSO4) adalah sumber utama untuk memperoleh Barium (Ba). Setelah diproses menjadi BaCl2 barium bisa diperoleh dari elektrolisis lelehan BaCl2. Reaksi yang terjadi : Katode : Ba2+ +2e- à Ba Anode : 2Cl- à Cl2 + 2e- b. Metode Reduksi Selain dengan elektrolisis, barium bisa kita peroleh dengan mereduksi BaO oleh Al. Reaksi yang terjadi : 6BaO + 2Al à 3Ba + Ba3Al2O6. 6. KEBERADAAN DI ALAM Logam alkali tanah memiliki sifat yang reaktif sehingga di alam hanya ditemukan dalam bentuk senyawanya. Berikut keberadaan senyawa yang mengandung logam alkali. 1. Berilium. Berilium tidak begitu banyak terdapat di kerak bumi, bahkan hampir bisa dikatakan tidak ada. Sedangkan di alam berilium dapat bersenyawa menjadi Mineral beril [Be3Al2(SiO 6)3], dan Krisoberil [Al2BeO4]. 2. Magnesium. Magnesium berperingkat nomor 7 terbanyak yang terdapat di kerak bumi, dengan 1,9% keberadaannya. Di alam magnesium bisa bersenyawa menjadi Magnesium Klorida [MgCl2], Senyawa Karbonat [MgCO3], Dolomit [MgCa(CO3)2], dan Senyawa Epsomit [MgSO4.7H2O]. 3. Kalsium. Kalsium adalah logam alkali yang paling banyak terdapat di kerak bumi. Bahkan kalsium menjadi nomor 5 terbanyak yang terdapat di kerak bumi, dengan 3,4% keberadaanya. Di alam kalsium dapat membentuk senyawa karbonat [CaCO3], Senyawa Fospat [CaPO4], Senyawa Sulfat [CaSO4], Senyawa Fourida [CaF]. 4. Stronsium. Stronsium berada di kerak bumi dengan jumlah 0,03%. Di alam strontium dapat membuntuk senyawa Mineral Selesit [SrSO4], dan Strontianit . 5. Barium. Barium berada di kerak bumi sebanyak 0,04%. Di alam barium dapat membentuk senyawa : Mineral Baritin [BaSO4], dan Mineral Witerit [BaCO3] 7. APLIKASI LOGAM ALKALI TANAH 1. Berilium (Be) a. Berilium digunakan untuk memadukan logam agar lebih kuat, akan tetapi bermassa lebih ringan. Biasanya paduan ini digunakan pada kemudi pesawat Jet. b. Berilium digunakan pada kaca dari sinar X. c. Berilium digunakan untuk mengontrol reaksi fisi pada reaktor nuklir. d. Campuran berilium dan tembaga banyak dipakai pada alat listrik, maka Berilium sangat penting sebagai komponen televisi. 2. Magnesium (Mg) a. Magnesium digunakan untuk memberi warna putih terang pada kembang api dan pada lampu blitz. b. Senyawa MgO dapat digunakan untuk melapisi tungku, karena senyawa MgO memiliki titik leleh yang tinggi. c. Senyawa Mg(OH)2 digunakan dalam pasta gigi untuk mengurangi asam yang terdapat di mulut dan mencegah terjadinnya kerusakan gigi, sekaligus sebagai pencegah maag. d. Mirip dengan Berilium yang membuat campuran logam semakin kuat dan ringan sehingga bisa digunakan pada alat alat rumah tangga. 3. Kalsium (Ca) a. Kalsium digunakan pada obat obatan, bubuk pengembang kue dan plastik. b. Senyawa CaSO4 digunakan untuk membuat gips yang berfungsi untuk membalut tulang yang patah. c. Senyawa CaCO3 biasa digunakan untuk bahan bangunan seperti komponen semen dan cat tembok. Selain itu digunakan untuk membuat kapur tulis dan gelas. d. Kalsium Oksida (CaO) dapat mengikat air pada Etanol karena bersifat dehidrator, dapat juga mengeringkan gas dan mengikat Karbondioksida pada cerobong asap. e. Ca(OH)2 digunakan sebagai pengatur pH air limbah dan juga sebagai sumber basa yang harganya relatif murah. f. Kalsium Karbida (CaC2) disaebut juga batu karbit merupakan bahan untuk pembuatan gas asetilena (C2H2) yang digunakan untuk pengelasan. g. Kalsium banyak terdapat pada susu dan ikan teri yang berfungsi sebagai pembentuk tulang dan gigi. 4. Stronsium (Sr) a. Stronsium dalam senyawa Sr(NO3)2 memberikan warna merah apabila digunakan untuk bahan kembang api. b. Stronsium sebagai senyawa karbonat biasa digunakan dalam pembuatan kaca televisi berwarna dan komputer. c. Untuk pengoperasian mercusuar yang mengubah energi panas menjadi listrik dalam baterai nuklir RTG (Radiisotop Thermoelectric Generator). 5. Barium (Ba) a. BaSO4 digunakan untuk memeriksa saluran pencernaan karena mampu menyerap sinar X meskipun beracun. b. BaSO4 digunakan sebagai pewarna pada plastik karena memiliki kerapatan yang tinggi dan warna terang. c. Ba(NO3)2 digunakan untuk memberikan warna hijau pada kembang api.

Protein dan asam amino


Asam amino merupakan unit pembangun protein yang dihubungkan melalui ikatan peptida pada setiap ujungnya. Protein tersusun dari atom C, H, O, dan N, serta kadang-kadang P dan S. Dari keseluruhan asam amino yang terdapat di alam hanya 20 asam amino yang yang biasa dijumpai pada protein.







Dari struktur umumnya, asam amino mempunyai dua gugus pada tiap molekulnya, yaitu gugus amino dan gugus karboksil, yang digambarkan sebagai struktur ion dipolar. Gugus amino dan gugus karboksil pada asam amino menunjukkan sifat-sifat spesifiknya. Karena asam amino mengandung kedua gugus tersebut, senyawa ini akan memberikan reaksi kimia yang yang mencirikan gugus-gugusnya. Sebagai contoh adalah reaksi asetilasi dan esterifikasi. Asam amino juga bersifat amfoter, yaitu dapat bersifat sebagai asam dan memberikan proton kepada basa kuat, atau dapat bersifat sebagai basa dan menerima proton dari basa kuat.

Semua asam amino yang ditemukan pada protein mempunyai ciri yang sama, gugus karboksil dan amino diikat pada atom karbon yang sama. Masing-masing berbeda satu dengan yang lain pada gugus R-nya, yang bervariasi dalam struktur, ukuran, muatan listrik, dan kelarutan dalam air. Beberapa asam amino mempunyai reaksi yang spesifik yang melibatkan gugus R-nya.

Melalui reaksi hidrolisis protein telah didapatkan 20 macam asam amino yang dibagi berdasarkan gugus R-nya, berikut dijabarkan penggolongan tersebut : asam amino non-polar dengan gugus R yang hidrofobik, antara lain Alanin, Valin, Leusin, Isoleusin, Prolin, Fenilalanin, Triptofan dan Metionin. Golongan kedua yaitu asam amino polar tanpa muatan pada gugus R yang beranggotakan Lisin, Serin, Treonin, Sistein, Tirosin, Asparagin dan Glutamin. Golongan ketiga yaitu asam amino yang bermuatan positif pada gugus R dan golongan keempat yaitu asam amino yang bermuatan negatif pada gugus R. Dari ke-20 asam amino yang ada, dijumpai delapan macam asam amino esensial yaitu valin, leusin, Isoleusin, metionin, Fenilalanin, Triptofan, Treonin, dan Lisin. Asam amino essensial ini tidak bisa disintesis sendiri oleh tubuh manusia sehingga harus didapatkan dari luar seperti makanan dan zat nutrisi lainnya.


Uji Karbohidrat


Karbohidrat yang kita makan sehari – hari tenyata dapat diketahui dengan beberapa metode percobaan. Diantara nya dapat dilakukan dengan metode sebagai berikut



1. Uji molisch, Uji molisch merupakan cara yang paling umum untuk melakukan uji kabohidrat dalam suatu sampel. Untuk melakukan Uji molisch digunakan regen kimia yang berupa larutan naftol dalam alcohol. Apabila suatu sampel tersebut mengandung kabohidrat maka larutan tersebut akan berubah menjadi warna merah unggu.
2. Uji polisakarida, dalam uji polisakarida digunakan pereaksi berupa larutan iodium (I2). Sebagai contoh adalah pengujian amilum dalam suatu sampel. Mula – mula amilum dilarutkan dalam air hingga terbentuk suspense, kemudian suspense yang terbentuk dipanaskan hingga terbentuk warna biru. Warna biru tersebut berasal dari senyawa kompelks yang terbentuk dari amilosa dengan larutan iodium.
3. Uji gula pereduksi, untuk menguji kandungan gula pereduksi digunakan pereaksi felling. Gula pereduksi akan membentuk endapan merah bata.

Protein II

Sebagian besar ilmu kimia organisme hidup menyangkut 5 golongan senyawa utama, yaitu: karbohidrat, lipida, mineral, asam nukleat dan protein. Protein menentukan kebanyakan sifat-sifat yang ditemukan dalam kehidupan. Protein menentukan metabolisme, membentuk jaringan dan membertikan kemungkinan bagai kita untuk bergerak. Protein juga berfungsi mengangkut senyawa-senyawa dan melindungi kita dari penyebaran mikroorganisme yang merugikan.

Bahkan sifat-sifat yang diturunkan oleh suatu organisme untuk membentuk bermacam-macam jenis protein dengan kecepatan yang berbeda (Gilvery, 1996). Selain itu proses kimia dalam tubuh dapat berlangsung dengan baik karena adanya enzim, suatu protein yang berfungsi sebagai biokatalis. Di samping itu hemoglobin dalam butir darah merah (eritrosit) yang berfungsi mengangkut oksigen dari paru-paru ke seluruh jaringan tubuh adalah salah satu jenis protein (Riawan, 1990).

Tumbuhan membentuk protein dari CO2, H2O dan senyawa nitrogen. Hewan yang memakan tumbuhan mengubah protein nabati menjadi protein hewani. Di samping digunakan untuk pembentukan sel-sel tubuh, protein juga dapat digunakan sebagai sumber energi bila tubuh kita kekurangan karbohidrat dan lemak. Komposisi rata-rata unsur kimia yang terdapat dalam protein ialah sebagai berikut: karbon 50%, hydrogen 7%, oksigen 23%, nitrogen 16%, belerang 0-3% dan fosfor 0-3%. Dengan berpedoman pada kadar nitrogen sebesar 16%, dapat dilakukan penentuan kandungan protein dalam suatu bahan makanan .

Protein memiliki molekul besar dengan berat molekul bervariasi antara 5000 hingga jutaan. Dengan cara hidrolisis oleh asam atau oleh enzim, protein akan menghasilkan asam-asam amino. Ada 20 jenis asam amino yang terdapat dalam molekul protein. Asam-asam amino ini terikat satu dengan lain oleh ikatan peptide. Protein mudh dipengaruhi oleh suhu tinggi, pH, dan pelarut organik (Riawan, 1990)

Asam amino adalah senyawa yang mempunyai gugus karbkosil (-COOH) dan gugus amino (-NH2). Rumus umum untuk asam amino adalah:
NH2
H-C-COOH
R

Dari rumus umum tersebut dapat dilihat bahwa atom karbon alfa adalah atom karbon asimetrik, kecuali bila R adalah atom H. Oleh karena itu asam amino memiliki sifat memutar bidang cahaya terpolarisasi atau aktivitas optik. Oleh karena aton karbon asimetrik, maka molekul asam amino mempunyai dua konfigurasi D dan L. Molekul asam amino dikatakan mempunyai konfigurasi L apabila gugus –NH2 terdapat di sebelah kiri atom karbon alfa. Bila posisi gugus –NH2 di sebelah kanan, molekul asam amino itu memiliki konfigurasi D.

Hal ini seperti konfigurasi D-gliseraldehida yang memiliki gugus –OH di sebelah kanan atom karbon asimetrik. Asam-asam amino yang terdapat pada protein umumnya mempunyai konfigurasi L. Asam amino yang mempunyai konfigurasi D dapat diperoleh dari organisme mikro, misalnya D-asam glutamate dari Bacillus anthracis, D-alanin terdapat pula dalam dinding sel bakteri. D-asam amino dapat pula diperoleh sebagai hasil hidrolisis antibiotic gramisidin atau basitrasin. Konfigurasi asam amino tidak ada hubungannya dengan arah putaran cahaya terpolarisasi (Riawan, 1990).

Sifat-sifat Asam Amino

Seperti yang sudah diutarakan di atas, asam-asam alfa amino bersifat optis aktif kecuali glisin (asam amino asetat). Pada umumnya mereka larut dalam air dan tidak larut dalam pelarut organic non-polar seperti eter, aseton dan chloroform. Sifat asam amino ini berbeda dengan asam karboksilat maupun dengan sifat amina. Asam karboksilat alifatik maupun aromatic yang terdiri atas beberapa atom karbon umumnya kurang larut dalam air tetapi larut dalam pelarut organik. Demikian pula amina pada umumnya tidak larut dalam air, tetapi larut dalam pelarut organik (Riawan, 1990).

Apabila asam amino larut dalam air, gugus karboksilat akan melepaskan ion H+, sedangkan gugus amina akan menerima ion H+ sebagaimana yang dituliskan di bawah ini
-COOH -COO- + H+
-NH2 + H+ -NH3

Oleh adanya kedua gugus tersebut, asam amino dalam larutan dapat membentuk ion yang bermuatan positif dan juga negatif (zwitterions) atau ion amfoter (Riawan, 1990). Bila kadar ion hydrogen meningkat, senyawa tersebut akan bersifat basa karena gugusan karboksilat akan mengikat ion H+ sehingga terbentuklah gugusan COOH yang tidak bermuatan.

Gugusan ammonium akan menyebabkan ion tersebut bermuatan positif (bentuk kation). Sebaliknya zwitterions akan bersifat asam karena gugus ammonium akan melepas ion H+ bila kadar ion H+ menurun, sehingga terbentuklah gugusan ammonium yang tidak bermuatan. Akibatnya molekul tersebut menjadi bermuatan negatif (bentuk anion) (Gilvery, 1996).

Dalam suatu sistem elektroforesis yang mempunyai elektroda positif dan negatif, asam amino akan bergerak menuju elektroda yang berlawanan dengan muatan ion asam amino yang terdapat dalam larutan.

Oleh karena muatan itu tergantung pada pH larutan, maka pH larutan dapat diatur sedimikian rupa sehingga ion asam amino tidak bergerak ke arah elektroda positif maupun elektroda negatif dalam sistem elektroforesis. pH yang demikian itu disebut titik isolistrik (Riawan, 1990).

Sebagian dari molekul-molekul mungkin mempunyai muatan negatif, tetapi segera diimbangi oleh molekul-molekul lain dengan muatan positif yang sama banyak: jumlah molekul zwitterions pada titik isolistrik adalah yang paling banyak (Gilvery, 1996).

Pada pH di atas titik isolistrik protein bermuatan negatif, sedangkan di bawah titik isolistrik protein bermuatan positif. Oleh karena itu untuk mengendapkan protein dengan ion logam diperlukan pH larutan di atas titik isolistrik, sedangkan pengendapan dengan ion negatif memerlukan pH di bawah titik isolistrik. Ion-ion positif yang mengendapkan protein antara lain Ag+, Ca++, Zn++, Hg++, Fe++, Cu++ dan Pb++.

Sedangkan ion-ion negatif yang dapat mengendapkan protein ialah ion salisilat, trikloroasetat, pikrat, tanat dan sulfosalisilat. Berdasarkan sifat tersebut putih telur atau susu dapat digunakan sedagat antidote atau penawar racun apabila seseorang keracunan logam berat (Riawan, 1990).

Ditinjau dari strukturnya, protein dapat dibagi dalam dua golongan besar, yaitu golongan protein sederhana dan protein gabungan. Protein sederhana adalah protein yang hanya terdiri atas molekul asam-asam amino, sedangkan protein gabungan adalah protein yang terdiri atas protein dan gugus bukan protein. Gugus ini disebut gugus prostetik dan terdiri atas karbohidrat, lipid atau asam nukleat (Riawan, 1990).

Protein sederhana dapat dibagi dalam dua bagian menurut bentuk molekulnya, yaitu protein fiber dan protein globular. Protein fiber mempunyai bentuk molekul panjang seperti serat atau serabut, sedangkan protein globular berbentuk bulat (Riawan, 1990).

Molekul protein fiber terdiri atas beberapa rantai polipeptida yang memanjang dan dihubungkan satu sama lain oleh beberapa ikatan silang sehingga merupakan bentuk serat atau serabut yang stabil. Sifat umum protein fiber ialah tidak larut dalam air dan sukar diuraikan dengan enzim (Riawan, 1990).

Kolagen adalah suatu jenis protein yang terdapat pada jaringan ikat. Protein ini mempunyai struktur heliks tripel. Kolagen tidak larut dalam air dan tidak diuraikan dengan enzim. Namun kolagen dapat diubah oleh pemanasan dalam air mendidih oleh larutan asam atau basa encer menjadi gelatin yang mudah larut dan mudah dicernakann. Hampir 30% protein tubuh adalah kolagen (Riawan, 1990).

Keratin adalah protein yang terdapat dalam bulu domba, sutera alam, rambut, kulit, kuku. Apabila dipanaskan dengan air mendidih dan diregangkan maka konformasi berubah menjadi lembaran berlipat parallel, karena ikatan hydrogen yang menunjang struktur terputus (Riawan, 1990).

Protein globular umumnya berbentuk bulat atau elips dan terdiri atas rantai polipeptida yang berlipat. Pada umumnya gugus R polar terletak di sebelah luar rantai peptida, sedangkan gugus R yang hidrofob terletak di sebelah dalam molekul protein. Protein globular pada umumnya mempunyai sifat dapat larut dalam air, dalam larutan asm dan basa dan etanol. Beberapa jenis protein globular adalah albumin, globulin, histon dan protemin (Riawan, 1990).

Albumin adalah protein yang dapat larut dalam air serta dapat terkoagulasi oleh panas. Larutan albumin dalam air dapat diendapkan dengan penambahan amonium sulfat hingga jenuh. Albumin antara lain terdapat pada serum darah dan bagian putih telur (Riawan, 1990).

Globulin mempunyai sifat sukar larut dalam air murni, tetapi dapat larut dalam larutan garam netral, misalnya larutan NaCl encer. Larutan globulin dapat diendapkan oleh penambahan garam amonium sulfat hingga setengah jenuh. Globulin dapat diperoleh dengan jalan mengekstrasikannya dengan larutan garam (5-10%) NaCl, kemudian ekstrak yang diperoleh diencerkan dengan penambahan air. Seperti albumin, globulin juga dapat terkoagulasi oleh panas. Globulin antara lain tertdapat dalam serum darah, pada otot dan jaringan lain (Riawan, 1990).

Protein gabungan adalah protein yang berikatan dengan senyawa yang bukan protein. Gugus bukan protein ini disebut gugus prostetik. Ada beberapa jenis gabungan antara lain mukoprotein, glikoprotein, lipoprotein dan nucleoprotein (Riawan, 1990).

Friday, December 9, 2011

Protein

Protein adalah senyawa organik kompleks yang berbobot molekul tinggi merupakan polimer dari monomer-monomer asam amino yang dihubungkan satu sama lain dengan suatu ikatan peptida. molekul protein mengandung karbon, hidrogen, oksigen, nitrogen , sulfur dan fosfor. protein berperan dalam pembentukan struktur dan fungsi sel. protein biasanya ditemukan di rambut,jaringan pengikat, kolagen, dan membran sel.


Kebanyakan protein merupakan enzim atau subunit enzim. Jenis protein lain berperan dalam fungsi struktural atau mekanis, seperti misalnya protein yang membentuk batang dan sendi sitoskeleton. Protein terlibat dalam sistem kekebalan (imun) sebagai antibodi, sistem kendali dalam bentuk hormon, sebagai komponen penyimpanan (dalam biji) dan juga dalam transportasi hara. Sebagai salah satu sumber gizi, protein berperan sebagai sumber asam amino bagi organisme yang tidak mampu membentuk asam amino tersebut (heterotrof).
Protein merupakan salah satu dari biomolekul raksasa, selain polisakarida, lipid, dan polinukleotida, yang merupakan penyusun utama makhluk hidup. Selain itu, protein merupakan salah satu molekul yang paling banyak diteliti dalam biokimia. Protein ditemukan oleh Jöns Jakob Berzelius pada tahun 1838.

Biosintesis protein alami sama dengan ekspresi genetik. Kode genetik yang dibawa DNA ditranskripsi menjadi RNA, yang berperan sebagai cetakan bagi translasi yang dilakukan ribosom. Sampai tahap ini, protein masih "mentah", hanya tersusun dari asam amino proteinogenik. Melalui mekanisme pascatranslasi, terbentuklah protein yang memiliki fungsi penuh secara biologi.

Protein dapat di uji menggunakan : 
1.Uji Molisch
2.Uji Adam Weikic
3.Uji Belerang
4.Uji Xanthoprotein
5.Uji Pengendapan Protein
6.Uji Pengendapan protein dalam pelarut organik
7.Uji Salting out